top of page
< Back

Glacial-Holocene variability in sediment accumulation and erosion along submarine blind canyons: a case study from Eastern Mediterranean Sea

Katz O. (1), Katz O. (2), Katz O. (3),

(1) Geological Survey of Israel, 32 Yesha'ayahu Leibowitz, Jerusalem 9692100, Israel

(2) The Fredy and Nadine Herrmann Institute of Earth Sciences, The Hebrew University of Jerusalem, Israel

(3) National Natural History Collections, The Hebrew University of Jerusalem, Israel,National Natural History Collections, The Hebrew University of Jerusalem, Israel

Submarine canyons serve as important sediment transport conduits from littoral zones to the deep sea, with strong impacts on the sedimentation patterns in marginal areas of the ocean. Here, we present a study of the geological history and the recent activity of the Nahariya submarine canyon, the longest of a system of ~15 small blind canyons located in the eastern Mediterranean Sea, offshore Israel. Two piston cores retrieved from the middle and outlet of the canyon, at 650 m and 915 m water depth, respectively, were the focus of a multi-proxy study aiming to characterize sediment transport and deposition along the canyon during the Last Glacial and up to the present.
Both cores reveal a sequence of homogenous sediment of late last glacial age, which are capped by an unconformity overlying by fine laminated sediment dated to the last ~200 years. Thus, the deglacial and most of the Holocene intervals are absent from the record. Evidence for down canyon sediment transport are abundant and include a 70 cm interval of mud clasts with disordered glacial ages that appears immediately below the hiatus, as well as broken calcareous shells of dead benthic foraminiferal species of shallow marine habitats, which are abundant throughout both cores. Similarly, shelf-derived living benthic foraminiferal species were found in the core-tops, indicating that active sediment transport persists along this canyon today.
We conclude that the history of Nahariya submarine canyon includes a period of sediment accumulation that lasted until the last deglaciation. Thereafter, the canyon was dominated by an erosive regime that persisted throughout the Holocene. Sediment accumulation resumed ~200 years ago. We suggest that the recent resumption of sediment-accumulation is a result of anthropogenic amplification of on-land soil erosion accompanied by a wet period that persisted in the region and enhanced land to sea sediment transport.

bottom of page